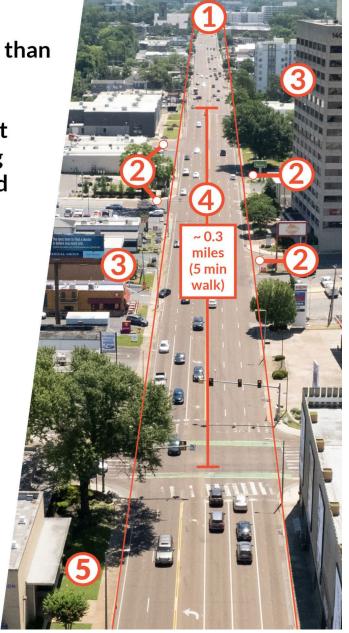

Death by Design

The science behind why our streets are so dangerous

Harvey J. Miller

Department of Geography and

Center for Urban and Regional Analysis


THE TOP 20

Most dangerous metropolitan areas for pedestrians (2016-2020)

1 Design can be more influential on behavior than speed limits.

- Other streets regularly intersect Union, but lack crosswalks or signals, because keeping vehicles from stopping (speed) is prioritized ahead of providing frequent crossings (safety).
- Numerous destinations means that more people will be present.
- Marked, signalized crosswalks are located as much as 0.4 miles apart, potentially requiring a 10-minute round trip to reach a destination that's directly across the street.
- **(5)** Sidewalks exist, but as an afterthought.

Photos by Forever Ready Productions

Why design creates danger

Risk Compensation

Safety improvements lead to riskier behaviors

Safe Systems

Built environment shapes errors by drivers

Self Explaining Roads

Drivers are guided by perceptions of road environment

Evolution

Our brains cannot rationally deal with speed (yet)

This section of Morse Road in Columbus looks like a highway to drivers -- and had a high rate of serious crashes.

Photo: Google

May 12, 2022

The deadly impact of urban streets that look like highways

More crashes on roads where drivers think they can drive fast

Stiles, J., Li, Y. and Miller, H.J. (2022) "How does street space influence crash frequency? An analysis using segmented street view imagery," *Environment and Planning B: Urban Analytics and City Science*, 49, 2467-2483.

How street space influences crash frequency

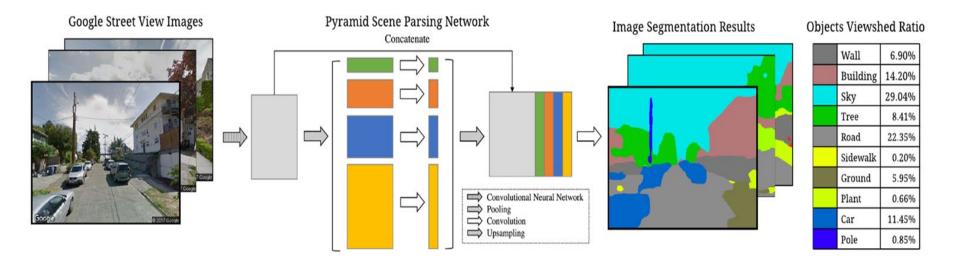
Research questions

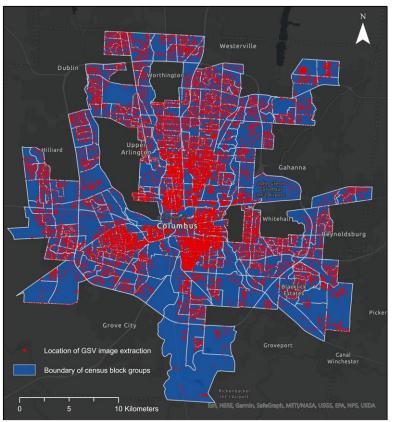
- 1. How do <u>specific street space features</u> influence serious crash frequency?
- 2. How do <u>street space features combined</u> (forming visual built environments) influence serious crash frequency?

Data

- Google Street View imagery
- Land use, infrastructure and crash data
- Columbus, Ohio 2018-2019

Street views in Columbus, Ohio


Broad Street in The Hilltop

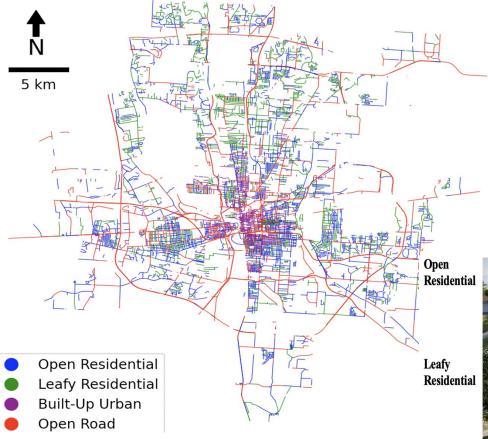


Neil Ave in Victorian Village

Street views segmented into data by PSPNet

Machine learning algorithm

Google Street View Images



Most common street space elements on Columbus road segments (n=5997)

1. Sky	6. Sidewalk	11. Wall	16. Pole	21. Stairs
(27.9%)	(2.3%)	(0.76%)	(0.14%)	(0.05%)
2. Road	7. Earth	12. Path	17. Sign	22. Trashcan
(24.6%)	(1.8%)	(0.77%)	(0.11%)	(0.04%)
3. Tree	8. Car	13. Fence	18. Floor	23. Dirt
(18.0%)	(1.6%)	(0.69%)	(0.10%)	(0.04%)
4. Grass	9. House	14. Field	19. Truck	24. Mountain
(12.1%)	(1.1%)	(0.31%)	(0.07%)	(0.03%)
5. Building	10. Plant	15. Ceiling	20. Bridge	25. Van
(6.1%)	(0.94%)	(0.15%)	(0.05%)	(0.03%)

Four Types of Street Spaces

Built-Up Urban

Open Road

Associated with Increased Crashes

Controls

- Highways, arterial, collector roads **
- Number of lanes**
- Number of commercial land uses**
- Number of bus stops**
- Area population density**

Street features

Signs**

Visual environment

- Open Road**
- Built-up Urban*

Associated with Decreased Crashes

Controls

- Presence of medians**
- Shoulder width**
- Area household income**
- Mixed area use residential+commercial**

Street features

Trash cans**

Visual environment

Leafy Residential*

^{**} Significant at the p<0.01 level; * Significant at the p<0.05 level;

The unsafe hybrid of a **street** (for people) and a **road** (for fast movement)

Discussion

Ways to improve safety on "open roads"

- 1. Reduce width available to motor vehicles: Replace with protected bike/ped infrastructure
- 2. Add street trees: Trees are the answer!
- 3. Buildings in front, cars in back: Reconsider access and parking to create more enclosed streetscapes
- 4. Complexity or speed: Streets or roads no "stroads"

Conclusion

What can we do more generally?

- Update archaic design protocols and standards that assume we can design for rational and error-free driving at high speeds
- Replace with
 - Safe systems approach: Errors happen!
 - Complete Streets: Design streets for <u>all</u> users
 - New standards: Less AASHTO more NACTO

Thank you!

Email

miller.81@osu.edu

Homepage

u.osu.edu/miller.81

Center for Urban and Regional Analysis

cura.osu.edu

Collaborators

Armita Kar (Nationwide Children's Hospital)

Jinhyung Lee (Western University, Canada)

Yuchen Li (Cambridge University, UK)

Adam Porr (Mid-Ohio Regional Planning Commission)

Jonathan Stiles (Columbia University)

Ginger Yang (Nationwide Children's Hospital)

THE OHIO STATE UNIVERSITY

CENTER FOR URBAN AND