

111 Liberty Street, Suite 100 Columbus, Ohio 43215 morpc.org T. 614. 228.2663 TTY. 1.800.750.0750 info@morpc.org

NOTICE OF A MEETING SUSTAINING SCIOTO BOARD MID-OHIO REGIONAL PLANNING COMMISSION

REMOTE MEETING

February 24, 2020, 2:30 pm - 4:00 pm

AGENDA

2:30pm	Welcome
-	Kristen Atha, Chail

- 2:35 3:10 pm Featured Presentation -Danny Johnson, Atlanta Regional Council
- **3:10 3:20 pm** Agricultural and Rural Communities Outreach Team Jessica d'Ambrosio, Ag&Rural Working Team Chair
- 3:20 3:30 pm Precipitation Data for Water Infrastructure
- **3:30 3:40 pm MORPC Staff Update** Brooke White and Edwina Teye, MORPC
- 3:40 3:55 pm Board member updates
- 3:55 4:00 pm Next Steps Kristen Atha , Chair
- 4:00 pm Adjourn

Please notify Lynn Kaufman at 614-233-4189 or LKaufman@morpc.org to confirm your attendance for this meeting or if you require special assistance.

The next Sustaining Scioto Board Meeting will be on April 28, 2021, 2:30 pm – Location to be determined

William Murdock, AICP Executive Director Karen J. Angelou Chair Erik J. Janas Vice Chair Chris Amorose Groomes Secretary

SUSTAINING SCIOTO BOARD MEETING

December 9, 2020

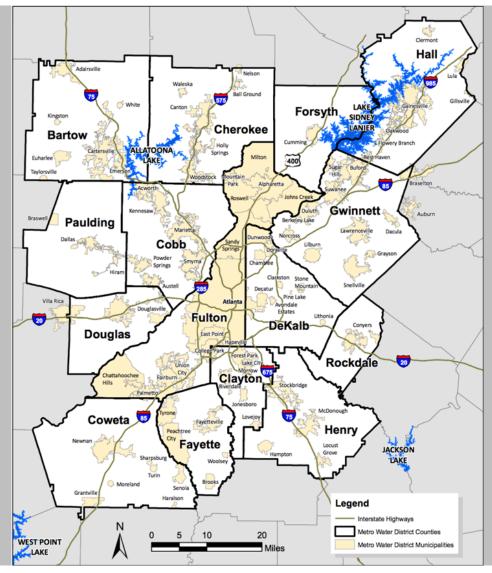
Featured Presentation

 \bigcirc

Daniel Johnson, PE Atlanta Regional Commission

Metro Water District Climate Utility Study

Danny Johnson, Manager Katherine Atteberry, Stormwater Planning Manager Metropolitan North Georgia Water Planning District February 2021



METRO NORTH GEORGIA WATER PLANNING DISTRICT

AKA "The District" AKA MNGWPD

Establishes strategies

- Water Supply
- Conservation
- Watershed Management
- Wastewater Treatment

Integrated and holistic approach

Mixed signals...

Atlanta Flooding Update: Heavy Rain Shuts Down Roads In Metro Area


BY JESSICA MENTON 🔰 ON 05/31/15 AT 5:25 PM

The New York Times

Drought-Stricken South Facin

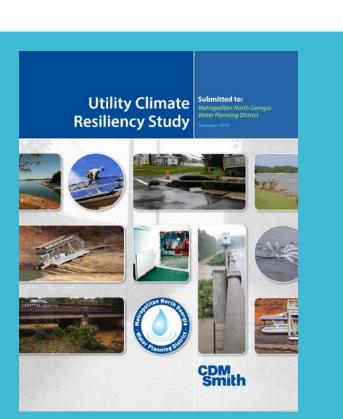
By BRENDA GOODMAN OCT. 16, 2007

Worst-case analyses indicate that Lake Lanier, the main water source for Atlanta, could be drained dry within four months. Pouya Dianat/The Atlanta Journal-Constitution

Hell and High Water hits Georgia

Averages can be Misleading

Annual Rainfall


Average Annual Rainfall = 50 inches

80"		DROUGHT	ROU	DROUGHT DROUGHT DROUGHT DROUGHT	DROUGHT
70"					
60"					
50"					
40"					
30"					
20"					
10"					
0"					
1945 1950 1955	1965 1965 1970 1975	1980 1985 1990 1995	2000	2010 2015 2018	2019 2020

Monthly global mean temperature 1851 to 2020 (compared to 1850-1900 averages)

1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	° F	°C
	1032	1055	1054	1055	1050	105/		1033	IUUU			IDUS		1003			> 2.7	> 1.5
																	2.16 to 2.7	1.2 to 1.5
1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1.8 to 2.16	1 to 1.2
																	1.44 to 1.8	0.8 to 1
1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1.08 to 1.44	0.6 to 0.8
																	0.72 to 1.08	0.4 to 0.6
1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	0.36 to 0.72	0.2 to 0.4
																	0.18 to 0.36	0.1 to 0.2
1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	0 to 0.18	0 to 0.1
																	-0.18 to 0	-0.1 to 0
1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	-0.36 to -0.18	-0.2 to -0.1
1930	1931	1930	1939	1340	1341	1342	1343		1343	1340	1341	1340	1343	1930	1931	1932	-0.72 to -0.36	-0.4 to -0.2
																	-1.08 to -0.72	-0.6 to -0.4
1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	-1.44 to -1.08	-0.8 to -0.6
1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	Nov	Jan Feb
																	Oct VF	AR Mar
1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Sep	Apr
																	Aug	May Jun
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
	$\langle \uparrow \rangle$		VIV		$\langle T \rangle$		$\langle T \rangle$		VIV		$\langle \rangle \rangle$							

Data: HadCRUT5 - Created by: @neilrkaye

STUDY PURPOSE

...to predict future climate conditions or the likelihood that certain conditions could occur.

...to identify potential climate conditions that, if they do occur, could create specific risks to the water resources within the District

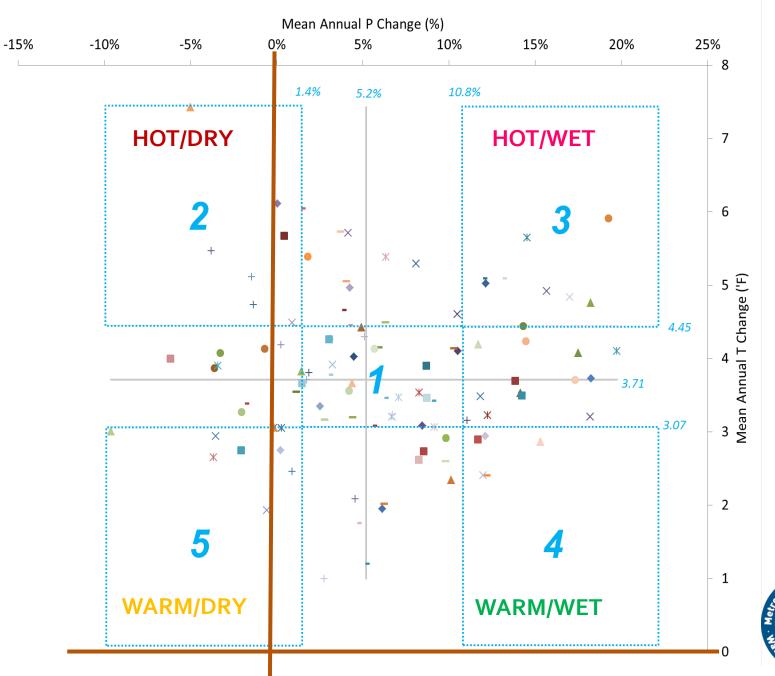
APPROACH

Any future climate variability will create risks to water and water-related facilities, so:

- Define types of risk
- Potential ranges

APPROACH

We don't know which trends are most likely, so:


- Monitor climate trends and plan adaptively
- Consider preemptive measures that are low cost, low risk and will yield benefits regardless of climate trends

REPRESENTATIVE SUMMARY OF CLIMATE SCENARIOS

5 based on Global Climate Models (GCMs)

1 based on extending historic records

Vanning

Annual P and T Projection Anomalies

PRIMARY CLIMATE IMPACTS

WATER QUALITY

- Decrease in annual low flows
- Increase in water temperatures (0.1 to 2.9°F)
- Decrease in Dissolved Oxygen (DO) by up to 1.4 mg/L

PRIMARY CLIMATE IMPACTS

WATERSHED

- Increase in storm frequency & intensity (o to 12% depth)
- Higher peak stream flow (5- 11% for 5-yr storms)
- Increase in pollutant loading (-1 to +15% range across scenarios)

PRIMARY CLIMATE IMPACTS

WATER SUPPLY

- Test case reservoir yield could decrease by 10% or increase by up to 30%
- Tendency toward more frequent and severe droughts

RESPONSES TO KEY IMPACTS

Preemptive Strategies

Adaptive Strategies

Near-term "no regret" recommendations that could enhance ongoing activities or provide multiple benefits beyond reducing sensitivity to climate conditions.

Specific suggestions to help reduce water and wastewater facilities' vulnerability to specific climate trends if they develop.

PREEMPTIVE MEASURES

"No Regret"

	Preemptive Measures	Relevant Climate Conditions	Specific Risks	Benefits of the Measure
Adapt	Implement climate tracking protocols	All	 Future climate trends are uncertain 	 Specific response measures can be triggered by the onset of actual, recognizable trends
Water Quality	Green Infrastructure	All	 Increased Storm Depth/frequency/Intensity Increased nonpoint source pollution Reduced reservoir yields 	 Mitigate storm depth and volume Reduce nonpoint pollution loads Increased local water supply
Water	Drought Management Plans that specifically identify risks to individual reservoirs	All	 Increased tendency toward more severe/frequent drought conditions from all scenarios Potential reduction of reservoir yield Uncertainty about the type of drought that is riskiest for each reservoir (long and gradual vs. short and sudden) 	 Specific drought triggers for each utility and supply system Unified guidance from the District on drought conditions/response Correlation with Demand Management (below) Potential for supply side management
Supply	Demand Management	All	 Increase in water demand 	 Help conserve water by lowering demand
	Integrate Reclaimed Water into Supply Planning (possibly through policy incentives that do not yet exist)	All conditions could increase demand and drought risk. Dry scenarios also reduce reservoir yield.	 Increase in water demand Reduction in reservoir yield Increased drought frequency and/or severity 	 Utilizes an available resource to offset demand without new hydrologic stresses Policies and incentives could foster regional collaboration
	Extreme Precipitation Analysis	Central, Hot Dry, Warm Wet	 Increased Storm Depth/frequency/Intensity 	 Prioritize specific facilities at the greatest risk (conveyance, treatment, retention, etc.) that would benefit from climate-triggered enhancements
Floods	Conveyance system inspection and maintenance	All	 Increased flows during storm events Damage due to lowering water table and tree root migration 	 Prioritize upgrades to conveyance systems.

MULTI-BENEFIT SOLUTIONS

EXAMPLE

Green Infrastructure

Reduce nonpoint source pollutant loads

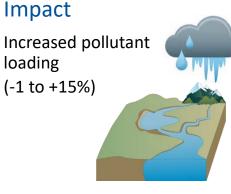
Reduce flooding

from increased

storm depth

Reduce need for back-up WTP and WWTP

Reduce need for increased dam and levee level of service


Wastewater treatment effluent regulations

Limit need for changes in WTP treatment processes

ADAPTIVE MEASURES

EXAMPLE

Issues

More stringent effluent regulations

Scenarios

INCREASE IN NONPOINT SOURCE POLLUTANT LOADS FOR WWTPs

Central
 Hot/Dry
 Hot/Wet
 Warm/Dry
 Warm/Wet
 Trend

Key Adaptation Strategies

ISSUE

- Regulate point sources and non-point source pollutant sources
- Land use planning changes
- Mitigate non-point source pollution increases through green infrastructure

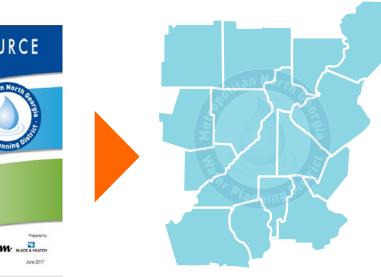
CONCLUSIONS

Any future climate variability will create risks to water and water-related facilities.

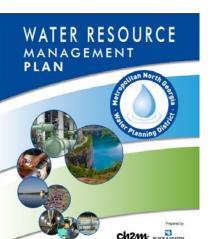
CONCLUSIONS

We don't know which trends are most likely, so:

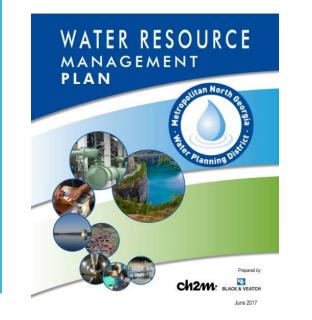
- Monitor climate trends and plan adaptively
 - Identify triggers
 - Prioritize actions based on risk
- Consider preemptive measures that are low cost, low risk and will yield benefits regardless of climate trends
 - Drought management plans
 - Implementation of green infrastructure



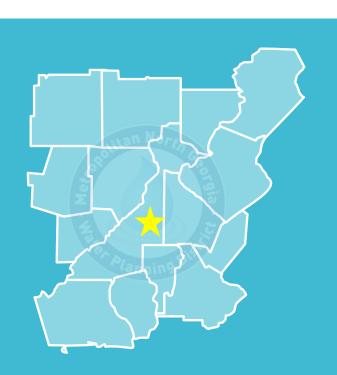
Water Resource Management Plan Implementation


Metro Water District develops regional Water Resource Management Plan

Local governments responsible for implementing plans Georgia EPD approves plans and enforces implementation via permits and state funding eligibility



Moving Beyond the Study


In 2017, the District added a new requirement for water and wastewater utilities.

"Include a section in the next update of the water and wastewater master plan entitled Climate Resiliency. This section shall discuss infrastructure potentially vulnerable to extreme weather events and identify adaptive strategies for mitigating impacts."

City of Atlanta Wastewater Master Plan:

Sustainability and Climate Resiliency Objectives

- Reducing Energy Usage and Transitioning to Clean Energy Sources
- Increasing Operation and Facility Efficiency
- Enhancing Resource Recovery
- Reducing Chemical Usage at Water Reclamation Centers

Cherokee County Water Authority Water System Master Planning

- Opportunity to prepare for drought
 - Evaluate range of actions
- Capital Improvement Projects
 - Identify projects that would mitigate drought impacts
 - Evaluate long term financing options

Model Ordinances

- Post-Construction Stormwater Management
- Floodplain Management
- Stream Buffer Protection
- Illicit Discharge and Illegal Connection
- Litter Control

Post-Construction Stormwater Management

Practicability Policy for Runoff Reduction

- Soil Infiltration Rate
- Water Table
- Shallow Bedrock
- Extreme Topography
- Karst Topography
- Hotspots/ Contamination
- Historic Resources
- Site Constraints
- Economic Hardship

Like Us on Facebook

Metropolitan North Georgia Water Planning District

Follow us on Twitter@NorthGAWater

Follow us on Instagram (a) NorthGAWater

Danny Johnson and Katherine Atteberry

Metropolitan North Georgia Water Planning District Djohnson@atlantaregional.org, KAtteberry@atlantaregional.org 470.378.1552, 470.378.1607

Agricultural and Rural Outreach Working Team Jessica D'Ambrosio, Chair

Establishing partnerships within the Agriculture and Rural Communities

Feedback to guide and design direct engagement opportunities

Updated Precipitation Data for Infrastructure

The City of Columbus is committed to protecting its citizens and local businesses from localized flooding through the design and construction of adequately sized public and private stormwater infrastructure. As stormwater infrastructure is sized based on rainfall amounts and distribution, it is important that the rainfall design criteria used in local stormwater regulations reflect current climate trends. The rainfall criteria used in the City's stormwater regulations were derived from the National Oceanic and Atmospheric Administration (NOAA) in 2004 which raises questions about its efficacy especially when compared to the increase in number and severity of storms experienced within our region over the past several years. In an effort to ensure that future stormwater infrastructure is appropriately sized to control localized flooding, the City would like for MORPC to consider this topic as an item of discussion with the Sustaining the Scioto Committee to determine if there is general interest from the Committee and Central Ohio communities in supporting an update to NOAA's Atlas 14 Volume 2 rainfall study.

Potential 2021 Forum

Focus

use of up to date or projected precipitation to inform water infrastructure planning **Attendees**

Local government engineers, etc. from across the region

Local speakers

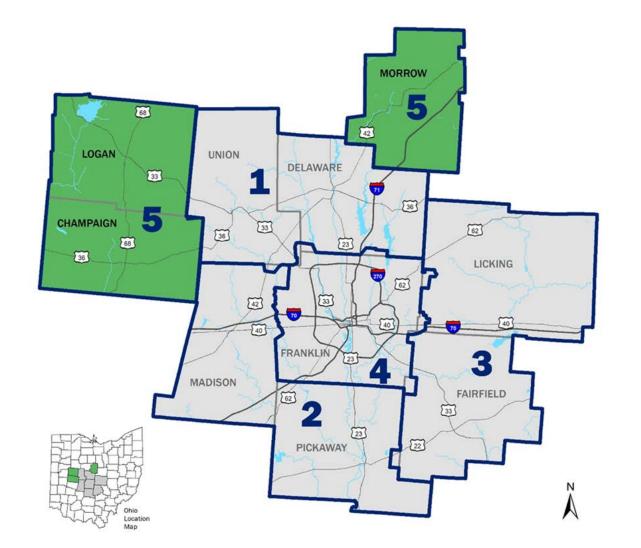
water infrastructure planning practices in the region

External speakers example best practices from across the U.S. US EPA

Is there work in this topic area to propose to OWDA in June?

Central Ohio Water Resources Planning

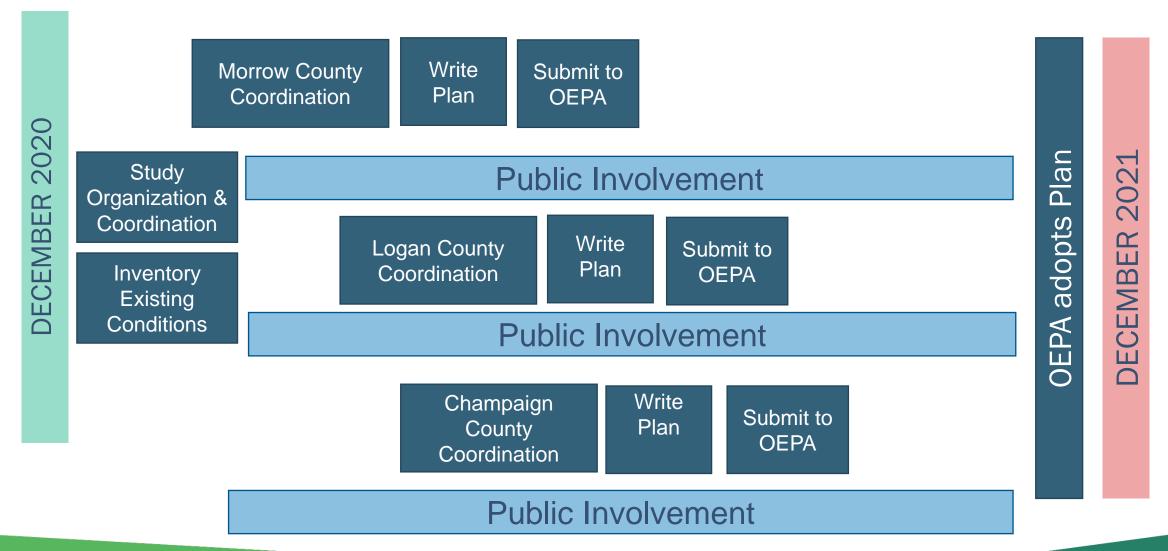
Edwina Teye Associate Planner



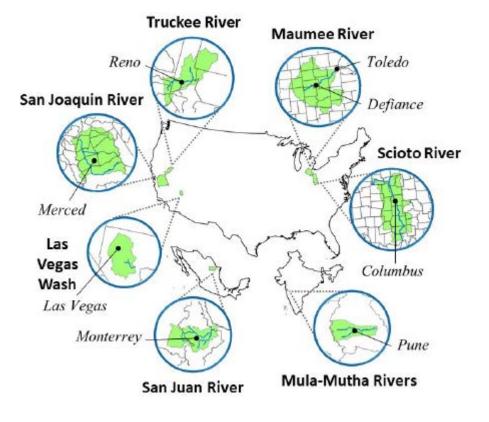
MID-OHIO REGIONAL MORPC PLANNING COMMISSION

New Phase Water Resources Planning

 \bigcirc



PLANNING PROCESS


 \bigcirc

NSF Smart and Resilient Watershed Proposal

Smart and resilient watersheds: Collaborative cyberinfrastructure for resilient watersheds

"The **Smart and Resilient Watersheds (SRW)** project looks at the intersection of watershed management, emerging information systems and smart tech, civic innovation, and the regional interaction of communities that rely on watershed services. "

NSF Smart and Resilient Watershed Proposal

Goal I: Conduct primary research projects in each individual watershed lead by local experts that address issues that converge around rural-urban linkages, regional connectivity, and future-oriented information systems.

Activity: Pilot smart tech information system project for each watershed based on local feedback

Goal II: Conduct research in each watershed focused on watershed scale information systems for all seven (7) watersheds.

Activity:

Administer a research survey of watershed managers and users, their access to, use of, and demand for new information on watershed ecosystem services.

Prepare "Watershed Scale Information Assessment" report for each watershed.

Conduct seven (7) "Smart and Resilient Watershed Workshop" across all study area watershed to present material to partners and co-develop pilot smart tech projects in each watershed.

Goal III: Conduct comparative analysis across all seven (7) watershed cases using primary and secondary data, processes, and lessons from implementation activities to expand socio-ecological technological systems analysis.

Activity: Conduct network analysis of rural and urban manager and uses in each watershed.

NSF Smart and Resilient Watershed Proposal

Goal IV: Develop new system of training, education, and workforce development activities around smart tech and information systems for watersheds.

Activity

Create paid problem-based internship opportunities for each of the five (5) US-based watersheds.

Design and administer five (5) "Hack the Watershed" event to take place in each study area watershed.

Goal V: Establish a new community of practice around Smart and Resilient Watersheds.

Activity

Design a new "Smart Watersheds Professional Network" composed of researchers, students, interns, and community partners on the project as seed member.

Design activities to specifically target underserved communities and expand membership by groups underrepresented in environmental, water, and technology fields.

Create an advisory board to engage with more private, nonprofit, and public sector organizations, increase inclusion and diversity, and assist with sustainability of the network beyond the life of the project.

Kristen Atha

Chair Sustaining Scioto Board Kristen.Atha@aecom.com

Glenn Marzluf

Vice-Chair Sustaining Scioto Board gmarzluf@delcowater.com

Edwina Teye

Associate Planner Mid-Ohio Regional Planning Commission <u>eteye@morpc.org</u> 111 Liberty Street, Suite 100 Columbus, OH 43215

Brooke White

Sr. Air Quality Specialist Mid-Ohio Regional Planning Commission <u>bwhite@morpc.org</u> 111 Liberty Street, Suite 100

Columbus, OH 43215

